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Abstract. We introduce here the notion of exhaustiveness, which is related with the notion of equicon-
tinuity, in asymmetric metric spaces. We give the relation between equicontinuity and exhaustiveness in
such spaces and some theorems and results about it. We show that in the asymmetric situation forward
convergence does not imply backward convergence (or vice versa), the limit of a sequence of exhaustive
functions may not be continuous, also may not be unique. Also, we prove a type of Ascoli theorem using
the notion of exhaustiveness in the asymmetric case. Finally, following Caserta and Kočinac [3], we will
investigate some properties of a statistical version of exhaustiveness in asymmetric metric spaces.

1. Introduction and preliminaries

Asymmetric metric spaces were first introduced by Wilson [26] in 1931 as quasi-metric spaces, and then
studied by many authors (see, for instance, [1, 16, 18, 23]). An asymmetric metric space is a generalization of
a metric space but the symmetry axiom is eliminated in the definition of metric spaces. We can come up with
some troubles in several classic statements of symmetric analysis without the symmetry property in the
definition of such spaces. In asymmetric metric spaces some notions, such as convergence, completeness and
compactness are different from the metric case. There are two notions for each of them, namely forward and
backward ones, since we have two topologies which are the forward topology and the backward topology
in the same space (see [15]). Collins and Zimmer [6] studied these notions in the asymmetric context.

An example that asymmetric metrics are common in real life is taxicab geometry topology including
one-way streets, where can have a path from point A to point B contains a different set of streets than a
path from B to A. Also, there can be found the latest applications of asymmetric metric spaces in the field
of pure and applied mathematics and material science as in [4, 17–19]. In [5], Cobzaş gave the basic results
on asymmetric normed spaces.

Gregoriades and Papanastassiou [13] introduced the notion of exhaustiveness for families and sequences
of functions which is close to the notion of equicontinuity.

In this study, we first introduce the notions of forward and backward exhaustiveness in asymmetric
metric spaces. We investigate the properties of exhaustiveness and its relation with equicontinuity in such
spaces. Also, by giving some examples, we show the importance of forward and backward convergences in
the asymmetric situation for some statements about the limit of a sequence of exhaustive functions. Then,
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we will give a characterization of compactness of F using exhaustiveness in asymmetric metric spaces.
In the last section, following Caserta and Kočinac ([3]), we will investigate some properties of a statistical
version of exhaustiveness in asymmetric metric spaces.

1.1. Asymmetric metric spaces
Let us recall some definitions and results on asymmetric metric spaces which were given in [6].

Definition 1.1. A function d : X × X→ R is an asymmetric metric and (X, d) is an asymmetric metric space if:
(1) d(x, y) ≥ 0 and d(x, y) = 0 holds if and only if x = y, for every x, y ∈ X,
(2) d(x, z) ≤ d(x, y) + d(y, z), for every x, y, z ∈ X.

Definition 1.2. The forward topology τ+ induced by d is the topology generated by the forward open balls
B+(x, ε) = {y ∈ X : d(x, y) < ε} for x ∈ X, ε > 0.

Likewise, the backward topology τ− induced by d is the topology generated by the backward open balls
B−(x, ε) = {y ∈ X : d(y, x) < ε} for x ∈ X, ε > 0.

Definition 1.3. A set S ⊂ X is forward bounded (resp. backward bounded), if there exists x ∈ X and ε > 0 such
that S ⊂ B+(x, ε) (resp. S ⊂ B−(x, ε)).

Definition 1.4. A sequence (xn)n∈N is said to be forward convergent to x ∈ X (backward convergent to x ∈ X) if
and only if

lim
n→∞

d(x, xn) = 0 ( lim
n→∞

d(xn, x) = 0)

and is denoted by xn
f
→ x (xn

b
→ x).

Definition 1.5. A sequence (xn)n∈N in an asymmetric metric space (X, d) is forward Cauchy (backward Cauchy)
if for each ε > 0 there exists a N ∈N such that for k ≥ n ≥ N, d(xn, xk) < ε (d(xk, xn) < ε) holds.

Definition 1.6. Let (X, dX) and (Y, dY) be asymmetric metric spaces. A function f : X → Y is said to be
f f−continuous ( f b−continuous) at x ∈ X, if for every ε > 0, there exists δ > 0 such that y ∈ B+(x, δ) implies
f (y) ∈ B+( f (x), ε), ( f (y) ∈ B−( f (x), ε)).

Definition 1.7. (Sequential definition of continuity) A function f : X → Y is f f−continuous at x ∈ X if and

only if whenever xk
f
→ x in (X, dX) we have f (xk)

f
→ f (x) in (Y, dY).

The statement holds analogously for the other types.

In the following proposition, Collins and Zimmer [6] gave the relation of forward and backward limits.

Proposition 1.8. Let d(y, x) ≤ k(x, y)d(x, y) for every x, y ∈ X, where
k : X × X→ R satisfies the following constraint:

∀x ∈ X ∃ε > 0 such that y ∈ B+(x, ε)⇒ k(x, y) ≤ K(x). (1)

Therefore, the existence of forward limits implies the existence of backward limits, and so limits are
unique.

Example 1.9. The Sorgenfrey asymmetric metric is the function d : R ×R→ R+
0 is given by

d(x, y) :=
{

y − x, if y ≥ x
1, if y < x

which does not satisfy (1).
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Definition 1.10. A set S ⊂ X is
(1) forward compact if every open cover of S in the forward topology has a finite subcover.
(2) forward relatively compact if S is forward compact, where S denotes the closure of S in the forward

topology.
(3) forward sequentially compact if every sequence in X contains a forward convergent subsequence.
(4) forward complete if every forward Cauchy sequence is forward convergent.

Lemma 1.11. Let d : X × X → R+
0 be an asymmetric metric. If (X, d) is forward sequentially compact and xk

b
→ x,

then xk
f
→ x.

Lemma 1.12. A forward compact set X is forward sequentially compact.

Definition 1.13. A subset S ⊂ X is forward totally bounded if for each ε > 0 it can be covered by finitely many
forward balls of radius ε.

Proposition 1.14. If (X, d) is forward sequentially compact and forward totally bounded, then X is forward compact.

Definition 1.15. Let (X, dX) and (Y, dY) be asymmetric metric spaces. A set F of functions from X to Y is
forward equicontinuous (backward equicontinuous) if for every x ∈ X and for every ε > 0 there exists δ > 0 such
that for every y ∈ Y and every f ∈ F with dX(x, y) < δ, dY( f (x), f (y)) < ε (dY( f (y), f (x)) < ε) holds.

Let YX be the set of functions from X to Y and C(X,Y) be the set of all f f−continuous functions from X
to Y. The uniform metric on YX is

ρ( f , 1) := sup{d( f (x), 1(x))
∣∣∣∣ x ∈ X},

where d(x, y) := min{d(x, y), 1} and d is the asymmetric metric associated with Y . This metric induces the
uniform topology on YX.

Definition 1.16. Let ( fn)n∈N be a function sequence and f be a function from X to Y.
(i) We say that the sequence ( fn)n∈N is forward pointwise convergent (backward pointwise convergent) to f if

for every ε > 0 there exist a N ∈N such that for all n ≥ N we have dY( f (x), fn(x)) < ε (d( fn(x), f (x)) < ε).
(ii) We say that the sequence ( fn)n∈N is forward convergent uniformly (backward convergent uniformly) with

limit f if for every ε > 0 there exists a natural number N such that for all x ∈ X and all n ≥ N we have
d( f (x), fn(x)) < ε (d( fn(x), f (x)) < ε).

1.2. Statistical convergence
The concept of statistical convergence of a sequence was introduced at a conference held at Wroclaw

University, Poland, in 1949, by Steinhaus [25] (see also [11]). Since then it has been studied by many authors
(see, for instance [2, 7, 9, 12, 20, 22, 24]). This idea is based on the notion of asymptotic density of a set
A ⊂ N. In [8], Das and Bhunia studied the idea of statistical convergence of double sequences for real
numbers in asymmetric metric spaces.

Let A ⊂ N. The number of elements which are less than or equal to some n ∈ N and which belong to
A is denoted by |A(n)| . The asymptotic density of A is defined by ∂(A) = lim

n→∞

|A(n)|
n , provided that this limit

exists. Note that ∂(N \ A) = 1 − ∂(A) if ∂(A) exists. A set is said to be statistically dense if ∂(A) = 1.
Let X be an asymmetric metric space. A real sequence (xn) ∈ X is said to be forward statistically convergent

to x ∈ X, (backward statistically convergent to x ∈ X) provided that for every ε > 0

∂({n ∈N : d(x, xn) ≥ ε}) = 0 (∂({n ∈N : d(xn, x) ≥ ε}) = 0 )

and is denoted by xn
f−st
→ x (xn

b−st
→ x).
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2. Forward and backward exhaustiveness

In [13], Gregoriades and Papanastassiou gave the notion of exhaustiveness for family and sequences of
functions. Similarly, in this section we give the notion of exhaustiveness in asymmetric metric spaces and
investigate some of its properties.

Definition 2.1. Let (X, dX), (Y, dY) be asymmetric metric spaces, x ∈ X, let F be a family of functions from X
to Y and fn : X→ Y,n ∈N.

(i) If F is infinite, then we say that the family F is forward exhaustive (backward exhaustive) at a point
x ∈ X provided that, for each ε > 0 there exists a δ > 0 and a finite subset K of F such that dY( f (x), f (y)) < ε
(dY( f (y), f (x)) < ε) for all f ∈ F \ K and all y ∈ X such that y ∈ B+(x, δ).

(ii) IfF is finite, then we say that the familyF is forward exhaustive at x ∈ X provided that each member
of F is f f−continuous at x ∈ X.

(iii) The sequence ( fn)n∈N is called forward exhaustive (backward exhaustive) at x ∈ X if for every ε > 0
there is δ > 0 and n0 ∈ N such that for all y ∈ B+(x, δ) and for all n ≥ n0 we have dY( fn(x), fn(y)) < ε
(dY( fn(y), fn(x)) < ε). The sequence ( fn)n∈N is forward exhaustive (backward exhaustive) if it is forward
exhaustive (backward exhaustive) at every x ∈ X.

It is clear that forward equicontinuity implies forward exhaustiveness. If for every ε > 0 the finite set
K in Definition 2.1.(i) can be taken to be the empty set, then a forward equicontinuous family is forward
exhaustive.

But the converse is not true. Forward exhaustiveness of F does not imply that there exists a finite
subset K of F such that F \K is forward equicontinuous, since the set K in the definition depends on ε > 0.

Similar remarks mentioned above can be given for backward ones.

Proposition 2.2. Let (X, dX), (Y, dY) be asymmetric metric spaces, x ∈ X, F be an infinite family of functions from
X to Y. Then, we have the following:

(i) F is forward equicontinuous at x if and only if F is forward exhaustive at x and f is f f−continuous at x for
each f ∈ F .

(ii) F is backward equicontinuous at x if and only if F is backward exhaustive at x and f is f b−continuous at x
for each f ∈ F .

Proof. It is enough to prove (i) only, since the proof of (ii) will be similar. The necessity part is clear from
the definitions.

For the converse part, let ε > 0, then there exist δ′ > 0 and K finite subset of F such that for every
y ∈ B+(x, δ′) and for every f ∈ F \ K we have dY( f (x), f (y)) < ε. Since each f is f f− continuous at x, there
exists δ( f ) > 0 such that for every y ∈ B+(x, δ( f )) we have dY( f (x), f (y)) < ε. Put δ := min{δ′, δ( f ) : f ∈ K} > 0.
Then for every y ∈ B+(x, δ) and for every f ∈ F we have dY( f (x), f (y)) < ε, which completes the proof.

The following example shows that each member of a forward exhaustive family (or sequence) need not
be continuous.

Example 2.3. Let X = R and Y = [0, 1/2] be given with the following asymmetric metrics:

dX(x, y) = dY(x, y) =

{
y − x, if y ≥ x

1, if y < x.

Let fn : X→ Y,n ∈N, defined by

fn(x) =


1

3n
, if x ≤ 0

1
2n
, if x > 0.
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Notice that none of fn is continuous at x = 0. But, the sequence ( fn)n∈N is forward exhaustive at x = 0.

Indeed, let ε > 0, so there exists n0 ∈ N, n0 >
1
6ε

such that for δ > 0, for all y ∈ B+(0, δ) = [0, δ) and for all

n ≥ n0 we have dY( fn(0), fn(y)) = fn(y) − fn(0) =
1

2n
−

1
3n

=
1

6n
< ε.

So we obtained as a result of this example that there exists a forward exhaustive family which has no
continuous functions.

The following lemma gives the relationship between forward exhaustiveness and backward exhaus-
tiveness. Since this lemma is a generalization of a statement for equicontinuity by Collins and Zimmer [6]
to exhaustiveness, the proof can be given in a similar way.

Lemma 2.4. Let (Y, dY) be a forward compact asymmetric metric space and forward convergence implies backward
convergence in Y. If a set F ⊂ YX is forward exhaustive, then it is also backward exhaustive (and vice versa).

If the condition of implication of forward convergence to backward convergence is dropped in this
lemma, forward exhaustiveness does not imply backward exhaustiveness.

Example 2.5. Let us consider the previous example. Forward convergence does not imply backward
convergence in the asymmetric metric on Y and the sequence ( fn)n∈N is not backward exhaustive at x = 0.
Indeed, for δ > 0 and for all y ∈ B+(0, δ) = [0, δ) we have dY( fn(y), fn(0)) = 1.

Now, let the asymmetric metric on Y be as in the following:

dY(x, y) =

{
y − x, if y ≥ x

1
2 (x − y), if y < x.

In this asymmetric metric, forward convergence implies backward convergence.

Let ε > 0. There exists a δ > 0 and n0 ∈N,n0 >
1
6ε

such that for all y ∈ B+(0, δ) = [0, δ) and for all n ≥ n0

we have

dY( fn(0), fn(y)) = fn(y) − fn(0) =
1

2n
−

1
3n

=
1

6n
< ε.

So, the sequence ( fn)n∈N is forward exhaustive at x = 0.
Now, we will show that the sequence ( fn)n∈N is backward exhaustive at x = 0. Let ε > 0. There exist a

δ > 0 and n0 ∈N, n0 >
1

12ε
such that for all y ∈ B+(0, δ) = [0, δ) and for all n ≥ n0 we have

dY( fn(y), fn(0)) =
1
2

( fn(y) − fn(0)) =
1
2

( 1
2n
−

1
3n

)
=

1
2

1
6n

< ε.

So, the sequence ( fn)n∈N is backward exhaustive at x = 0.

By the following theorem, it can be stated that the forward pointwise limit of a sequence of forward
exhaustive function is continuous, only if forward convergence implies backward convergence in the
asymmetric metric on Y.

Theorem 2.6. Let (X, dX) and (Y, dY) be asymmetric metric spaces such that forward convergence implies backward
convergence in Y and let f , fn,n ∈ N, be functions from X to Y. If ( fn)n∈N is forward pointwise convergent to f and
( fn)n∈N is forward exhaustive at x ∈ X, then f is f f−continuous at x ∈ X.

Proof. Fix ε > 0. Since, ( fn)n∈N is forward exhaustive at x ∈ X there exist a δ > 0 and n0 ∈ N such that for
all y ∈ B+(x, δ) and for all n ≥ n0 we have dY( fn(x), fn(y)) < ε/3. Let y ∈ B+(x, δ). Since ( fn)n∈N is forward
pointwise convergent to f , there exists an n1 ∈ N such that for all n ≥ n1 we have dY( f (y), fn(y)) < ε/3 and
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dY( f (x), fn(x)) < ε/3. Because forward convergence implies backward convergence in Y, dY( fn(y), f (y)) < ε/3
holds. Now, put N := max{n0,n1}. So , if y ∈ B+(x, δ),

dY( f (x), f (y)) ≤ dY( f (x), fN(x)) + dY( fN(x), fN(y)) + dY( fN(y), f (y))
< ε.

Therefore, f is f f−continuous at x ∈ X.

The next example shows that if forward convergence does not imply backward convergence in Y, then
the forward pointwise limit of a sequence of forward exhaustive function may not be continuous, and also
may not be unique.

Example 2.7. Let X := [0, 1] be equipped with the Euclidean metric and let Y := {(y1, y2) : y1 = 0 y2 ∈

(0, 1]}∪ {(−1, 0)}∪ {(1, 0)} ⊂ R2. Choose the metric on Y to be the Sorgenfrey metric in Example 1.9, extended
such that for (y1, y2) with y2 > 0,

d((y1, y2), (±1, 0)) = d((±1, 0), (∓1, 0)) = 1, d((±1, 0), (y1, y2)) = y2

Let f : X→ Y, x→
{

(−1, 0), x = 0
(1, 0), x > 0 and fn : X→ Y, x→ (0,

1
n

).

The sequence ( fn)n∈N is forward exhaustive and pointwise converges forwardly to discontinuous limit
f . However, the limit is not unique, since forward convergence does not imply backward convergence. For
example, ( fn)n∈N is forward pointwise convergent to f̃ : X→ Y, x→ (1, 0) being continuous.

A similar argument yields the following result.

Corollary 2.8. Let (X, dX) and (Y, dY) be asymmetric metric spaces such that backward convergence implies forward
convergence in Y and f , fn,n ∈ N, be functions from X to Y. If ( fn)n∈N is backward pointwise convergence to f and
( fn)n∈N is backward exhaustive at x ∈ X, then f is f b−continuous at x ∈ X.

Theorem 2.9. Let (X, dX) and (Y, dY) be asymmetric metric spaces such that forward convergence implies backward
convergence in Y and f , fn,n ∈ N, be functions from X to Y. If the function sequence ( fn)n∈N is forward pointwise
convergence to f and ( fn)n∈N is forward exhaustive at X, then the function sequence ( fn)n∈N is forward convergent
uniformly to f on every forward compact subset of X.

Proof. Let K ⊂ X be any forward compact set and choose ε > 0 arbitrarily and let x ∈ K. Since,the function
sequence ( fn)n∈N, is forward exhaustive at x, then there exist a δx > 0 and n0 ∈N such that for all y ∈ B+(x, δx)
and for all n ≥ n0 we have dY( fn(x), fn(y)) < ε/3.

By Theorem 2.6, f is f f−continuous at x, therefore there exists a δ > 0 with δx < δ such that dY( f (x), f (y)) <
ε/3 holds for all y ∈ B+(x, δx). Since forward convergence implies backward convergence in Y, we have
dY( f (y), f (x)) < ε/3.

Since X ⊆
⋃

x∈X
B+(x, δx) and X is forward compact, there exist some x1, x2, ..., xk ∈ X such that X =

k⋃
i=1

B+(xi, δxi ). By forward pointwise convergence of ( fn) to f , for each i there exist some mi ∈N such that for

all n ≥ mi we have dY( f (xi), fn(xi)) < ε/3.
Now, take n0 = max{nx1 ,nx2 , ...,nxk ,m1, ...,mk}, and let y ∈ X be arbitrary. So, y ∈ B+(xi, δxi ) for some i.

Then, dX(xi, y) < δxi < δ. Hence, we obtain dY( f (y), f (xi)) < ε/3 and dY( fn(xi), fn(y)) < ε/3.
Therefore, for all n ≥ n0,

dY( f (y), fn(y)) ≤ dY( f (y), f (xi)) + dY( f (xi), fn(xi)) + dY( fn(xi), fn(y)) < ε

Hence, ( fn)n∈N is forward convergent uniformly to f .
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3. An Ascoli-type theorem in asymmetric metric spaces

The Arzelá-Ascoli theorem which characterizes compactness is a fundamental theorem of functional
analysis. There can be found different statements for the Arzelá-Ascoli theorem in the literature (see in
[10, 14, 21]). In [6], Collins and Zimmer prove the Arzelá-Ascoli theorem in the asymmetric case. Here,
using exhaustiveness instead of equicontinuity in this theorem, we will give a type of the Ascoli theorem
in the asymmetric context.

It is clear that, if we take F as a subset of C(X,Y), then by Proposition 2.2. we can use exhaustiveness
instead of equicontinuity in the Arzelá-Ascoli theorem in asymmetric case which was proved by Collins and
Zimmer [6]. In that theorem, they gave relatively compactness of F under some conditions in asymmetric
metric spaces. Now, with the following theorem we will give a characterization of compactness of F in
asymmetric metric spaces.

First, we need the following lemma. In asymmetric metric spaces it can be given as in the metric case.

Lemma 3.1. Let (X, dX) and (Y, dY) be asymmetric metric spaces, with forward convergence equivalent to backward
convergence in Y. If Y is forward complete, then C(X,Y) is forward complete in the uniform metric ρ corresponding
to dY.

Theorem 3.2. Let X be forward compact, Y be forward complete asymmetric metric spaces and F be a subset of
C(X,Y). Suppose that forward convergence is equivalent to backward convergence in Y and every function sequence
in F has a forward convergent subsequence in Y. Then F is forward compact if F is forward closed, forward totally
bounded and forward exhaustive.

Proof. We must show that, F has a function sequence containing a forward convergent subsequence.
Let ( fn)n∈N be an arbitrary sequence in F and (xn)n∈N be a forward dense subset of X. By assumption,
the sequence ( fn(x1))n∈N has a subsequence ( fk1

n
(x1))n∈N which is forward convergent in Y. With the same

argument, we can construct a subsequence ( fk2
n
(x2))n∈N of that subsequence which is forward convergent in

Y.
Inductively, we obtain a sequence of sequences of naturals ...⊆ (k j+1

n ) ⊆ (k j
n) ⊆ ... ⊆ (k1

n) such that for
each j ∈ N the sequence ( fk j

n
(x j))n∈N is forward convergent in Y. It is clear that for each j ∈ N the diagonal

sequence ( fkn
n
(x j))n∈N is forward convergent in Y. By forward convergence and implication of forward

convergence to backward convergence in Y, this sequence is a forward Cauchy sequence. Since (xn)n∈N a
forward dense subset of X, there is an x j ∈ X such that for every x ∈ X and j ∈ {1, 2, ...,n}we have x j ∈ B+(x, δ).
By forward exhaustiveness of F , for every ε > 0 there exists δ > 0 and n0 ∈ N such that for every x ∈ X
and for every x j ∈ B+(x, δ) and for every kn

n > n0 we have that dY( fkn
n
(x), fkn

n
(x j)) < ε. Since F ⊆ C(X,Y) and

forward convergence implies backward convergence in Y, we have that dY( fkn
n
(x j), fkn

n
(x)) < ε. So, F is also

backward exhaustive. Using these results, we obtain the sequence ( fkn
n
(x))n∈N is a forward Cauchy sequence

for each x ∈ X. Then by Lemma 3.1, C(X,Y) is forward complete in the uniform metric ρ corresponding to
dY and hence, the sequence ( fkn

n
(x))n∈N is forward convergent.

Let fkn
n
(x)

f
→ f (x). Then by forward exhaustiveness of ( fkn

n
(x))n∈N and the forward compactness of

X, using Theorem 2.9, we have that the sequence ( fkn
n
(x))n∈N is forward convergent uniformly to f . Since

F is forward closed, f belongs to F and so, F is forward sequentially compact. Finally, using forward
sequentially compactness and forward total boundedness ofF , from Proposition 1.14, we findF is forward
compact.

4. Statistical version of exhaustiveness in asymmetric metric spaces

Caserta and Kočinac [3] studied the statistical version of exhaustiveness in metric spaces. In this section,
we will investigate some properties of this notion in asymmetric metric spaces.

Definition 4.1. A sequence ( fn)n∈N ⊂ YX is said to be forward statistically exhaustive (shortly forward st−ex-
haustive) at a point x ∈ X if for each ε > 0 there are δ > 0 and a statistically dense set M ⊂ N such that for
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each y ∈ B+(x, δ) we have dY( fn(x), fn(y)) < ε for each n ∈M. The sequence ( fn)n∈N is forward st−exhaustive
if it is forward st−exhaustive at every x ∈ X.

Similarly, ( fn)n∈N ⊂ YX is said to be backward statistically exhaustive (shortly backward st−exhaustive) at a
point x ∈ X if for each ε > 0 there are δ > 0 and a statistically dense set M ⊂N such that for each y ∈ B+(x, δ)
we have dY( fn(y), fn(x)) < ε for each n ∈M. The sequence ( fn)n∈N is backward st−exhaustive if it is backward
st−exhaustive at every x ∈ X.

Remark 4.2. (1) Every forward equicontinuous function sequence ( fn)n∈N is forward st−exhaustive, but the
converse need not be true.

(2) Every forward exhaustive function sequence ( fn)n∈N is forward st-exhaustive, but the converse need
not be true.

Same remarks can be considered for backward ones.

With the following example we observe that there is a function sequence ( fn)n∈N which is forward
st−exhaustive. However, it is neither forward exhaustive nor forward equicontinuous.

Example 4.3. Let X = R and Y = [−1, 1] be given with the following asymmetric metrics:

dX(x, y) =

{
y − x, if y ≥ x

1, if y < x and dY(x, y) =

{
y − x, if y ≥ x

2(x − y), if y < x

Let us consider the function sequence fn : X→ Y,n ∈N, defined in [3] by

fn(x) =



−1, if x ≤ 0 and n is prime
1
n
, if x ≤ 0 and n is not prime

1, if x > 0 and n is prime
1

2n
, if x > 0 and n is not prime.

The set of prime natural numbers P has asymptotic density ∂(P) = 0, take ε > 0 and n0 ∈N\P such that
1
n0
< ε. Then, for each n ∈ (N\P)∩{n ∈N : n > n0} and y ∈ B+(0, δ) we have dY( fn(0), fn(y)) = 2

(1
n
−

1
2n

)
< ε.

Hence, this function sequence is forward st−exhaustive at x = 0.
However, this function sequence is not forward exhaustive at x = 0. Indeed, for every δ > 0 and for

every y ∈ B+(0, δ) we have dY( fn(0), fn(y)) = fn(y)− fn(0) = 2 for infinitely many n. Also, by the definition of
forward equicontinuity and forward exhaustiveness, the sequence ( fn)n∈N is not forward equicontinuous.

With the following example, it can be said that a function sequence is forward st−exhaustive if and only
if backward st−exhaustive when forward st−convergence implies backward st−convergence in Y.

Example 4.4. Let us consider the previous example. The function sequence ( fn)n∈N is also backward
st−exhaustive at x = 0. Because, on the asymmetric metric Y, forward st−convergence implies backward

st−convergence and ∂(P) = 0, taking again ε > 0 and n0 ∈ N\P such that
1
n0
< ε, for each n ∈ (N\P) ∩ {n ∈

N : n > n0} and y ∈ B+(0, δ), we have dY( fn(y), fn(0)) = fn(0) − fn(y) =
1
n
−

1
2n

< ε.

If we change the asymmetric metric on Y as in the following

dY(x, y) :=
{

y − x, if y ≥ x
1, if y < x

the function sequence ( fn)n∈N is not forward st−exhaustive at x = 0, however it is backward st−exhaustive at
x = 0. Indeed, in this asymmetric metric, forward st−convergence does not equal to backward st−convergence
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and for every δ > 0 and every y ∈ B+(0, δ) we have dY( fn(y), fn(0)) = fn(0) − fn(y) =
1
n
−

1
2n

< ε, i.e., ( fn)n∈N

is backward st−exhaustive at x = 0, but it is not forward st−exhaustive at x ∈ X, since for every δ > 0 and
every y ∈ B+(0, δ) we have dY( fn(0), fn(y)) = 1.

Notice that we can give the following lemma in asymmetric case which is similar with the symmetric
case given in [3].

Lemma 4.5. A sequence ( fn)n∈N ⊆ YX is forward (backward) st−exhaustive if and only if each of its st−dense
subsequence is forward (backward) st−exhaustive.

Definition 4.6. Let (X, dX) and (Y, dY) be asymmetric metric spaces and ( fn)n∈N and f be functions defined
from X to Y.

(1) We say that the sequence ( fn)n∈N is forward statistically pointwise convergent (resp. backward statistically
pointwise convergent) to f if for every x ∈ X and every ε > 0 there exists a st−dense set M ⊂ N such that for
all n ∈M we have dY( f (x), fn(x)) < ε (resp. d( fn(x), f (x)) < ε).

(2) We say that the sequence ( fn)n∈N is forward statistically convergent uniformly (resp. backward statistically
convergent uniformly) with limit f if for every ε > 0, there exists a st−dense set M ⊂N such that for all n ∈M
and for every x ∈ X we have dY( f (x), fn(x)) < ε (resp. d( fn(x), f (x)) < ε).

As an important result of the definitions of statistical pointwise convergence and st-exhaustiveness of a
function sequence in asymmetric metric spaces, the following proposition can be given.

Proposition 4.7. Let (X, dX) and (Y, dY) be asymmetric metric spaces and ( fn)n∈N and f be functions defined from X
to Y. If ( fn)n∈N is forward (backward) pointwise convergent to f and forward (backward) exhaustive, then ( fn)n∈N is
forward (backward) statistically pointwise convergent to f and forward (backward) st−exhaustive.

Theorem 4.8. Let (X, dX) and (Y, dY) be asymmetric metric spaces. Assume that forward statistical convergence
implies backward statistical convergence in Y. If ( fn)n∈N is forward statistically pointwise convergent to f and
forward st−exhaustive, then f is f f−continuous.

Proof. Let x ∈ X and ε > 0. Since ( fn)n∈N is forward statistically pointwise convergent to f , there exists a
st−dense set K ⊂ N such that for all n ∈ K we have dY( f (x), fn(x)) < ε/3. Take y ∈ B+(x, δ). Then, there
exists a st−dense set L ⊂N such that for all n ∈ L we have dY( fn(y), f (y)) < ε/3, because of the convergence
implication in Y. On the other hand, since the sequence ( fn)n∈N is forward st−exhaustive at x ∈ X, there exists
a st−dense set M ⊂ N such that for every y ∈ B+(x, δ) and for every n ∈ M we have dY( fn(x), fn(y)) < ε/3.
Pick an arbitrary j ∈ K ∩ L ∩M. Then, for j ∈ K ∩ L ∩M and y ∈ B+(x, δ), we have

dY( f (x), f (y)) ≤ dY( f (x), f j(x)) + dY( f j(x), f j(y)) + dY( f j(y), f (y)) < ε.

It means that f is f f−continuous at x.

Similarly, the following result can be given for f b−continuity of the forward statistical pointwise limit
of the forward st-exhaustive function sequence.

Corollary 4.9. Let (X, dX) and (Y, dY) be asymmetric metric spaces. Assume that backward statistical convergence
implies forward statistical convergence in Y. If ( fn)n∈N is backward statistically pointwise convergent to f and
backward st−exhaustive, then f is f b−continuous.
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